PART 2

Example

Figure shows a kinematics diagram of a mechanism that is driven by moving link 2. Graphically reposition the links of the mechanism as link 2 is displaced 30 counterclockwise. Also determine the resulting displacement, velocity \& acceleration of point E .
(all values in inch multiply by 100 , units in mm)

- Sweep the arc of length $B C$ at the center of B^{\prime} to determine point C^{\prime}
- Point C' relocated from two arc
- Links 3 and 4 can be drawn

1. Calculate mobility

$$
\mathrm{n}=6 ; \mathrm{jp}=(6 \text { pins }+\mathrm{I} \text { sliding })=7 ; j \mathrm{jh}=0
$$

$F=3(6-1)-2(7)=1$
2. Reposition the driving link

Link 2 rotates 30 counterclockwise gives point B'
3. Determine the paths of all links directly connected to the frame

Reposition all points (B, C and E) on link connect to frame
4. Determine the precise position of point C^{\prime}

Arc draws of length $B C$ centered at B^{\prime} gives point C^{\prime}
5. Determine the precise position of point E^{\prime}

Point C moves to C^{\prime} by arc of length $C E$ pivoted at C^{\prime} and represents the path of point E^{\prime}

Assignment 2

Graphically position the links for the compressor linkage in the configuration shown in the figure. Then reposition the links as the 45 mm crank is rotated 90° counterclockwise. Determine the resulting displacement, velocity \& acceleration of the piston.

